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di Modena e Reggio Emilia, Via Campi 213/A, 41100 Modena, Italy
‡ Department of Physics and Astronomy, University of California, Irvine, CA 92717, USA

Received 5 July 1999

Abstract. A theoretical investigation has been made of intrinsic localized vibrational modes in an
anharmonic one-dimensional diatomic lattice with alternating force constants coupling successive
neighbours. This system simulates a row of atoms in the〈111〉 direction of a III–V semiconductor.
Specific calculations have been carried out for GaN, because it has a large gap between acoustic
and optical branches. We study small-amplitude atom vibrations (up to 0.4 Å), accessible to
experimental detection, in order to legitimize the expansion of the full potential to include cubic
and quartic terms. We consider then nearest-neighbour interactions through harmonic as well as
cubic and quartic anharmonic interactions to study the interplay between cubic and quartic terms
in the frequencies of the localized modes. The force constants were determined empirically by
fitting the longitudinal branches in the0–L direction of GaN. We have studied both gap and surface
intrinsic localized modes. Zinc-blende-structure chains are of particular interest, because the lack
of inversion symmetry prevents the classification of the modes as even or odd parity. Nevertheless,
modes were found that closely resemble the even- or odd-parity modes of an NaCl-structure chain.
Their frequencies lie inside the gap for GaN. The absence of inversion symmetry permits a variety
of surface modes to exist, depending on whether the bond at the surface is strong or weak and the
atom at the surface is light or heavy. All surface mode frequencies for GaN lie inside the gap as
found with the use of the full potential.

1. Introduction

It has been known for some time [1–4] that anharmonicity in translationally invariant lattices
can produce localized vibrational modes that travel at constant speed through the crystal.
The studies of Sievers and Takeno [5, 6] on one-dimensional monatomic chains with quartic
anharmonicity revealed the existence of odd-parity localized modes with frequency above that
at the zone boundary. Subsequent work by Page [7] showed that even-parity localized modes
also exist. The inclusion of a cubic term [8] of negative sign in the (K2,K3,K4) interaction
potential decreases the frequency of the localized mode. With increasing magnitude of the
cubic coefficient the frequency of the localized mode drops into the continuum of harmonic
modes thereby causing the localized mode to become unstable.

Analyses of one-dimensional lattices with realistic potentials [9] that include anharmon-
icity to all orders demonstrate that intrinsic localized modes do not appear above the top of
the harmonic band, but do appear in the gap between the acoustic and optical branches. These
calculations show that intrinsic localized modes exist for a very large range of amplitudes up
to 1 Å. Recently it has been shown for 3D diatomic systems that the use of the full potential
gives rise to modes localized inside the gap between the acoustic and optical branches [10].
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Even in this case the localized modes can occur for very large amplitudes. The molecular
dynamics simulations [10] indicate that the lifetime of the ILM modes is about 100–200
vibrational periods for large amplitudes. In a recent investigation [11] of diatomic chains
with the(K2,K3,K4) potential, localized modes were found with frequencies both above the
top of the optical branch and within the gap. The mode above the top of the optical branch
appears for larger values of the amplitude of the mode. In this case the positive quarticK4-
contribution of the potential dominates the interactions between neighbouring atoms increasing
the frequency of the mode. For this system two types of surface modes have been found: one
related to the surface mode of a harmonic diatomic chain [12] and the other entirely due to
the anharmonicity. A number of other investigations of surface modes in anharmonic linear
chains have been reported [13–18]. Recently ILM due to anharmonicity have been observed
in crystalline arrays of charged linear chains of PtCl with resonant Raman scattering [19]. For
III–V compounds up to now no measurements are available. In principle they could be made
for superlattices where minigaps are present at the minizone boundaries [20].

In this paper we restrict ourselves to the study stationary modes of small amplitudes up
to 0.4 Å. These amplitudes are accessible to experiments and on the other hand allow us to
expand with sufficient accuracy the potential up to fourth order. The advantage of using a
force-constant model is that we can study the interplay of the cubic and quartic interactions in
the value of the frequencies of the localized modes.

Of particular interest to the present work is a study [21] of anharmonic localized modes in
a linear chain with atoms of equal mass bonded by two different force constants that alternate
from one bond to the next. This simulates a row of atoms in the〈111〉 direction of a diamond-
structure crystal. Localized modes of both even and odd parity can occur. Whether these modes
have frequencies in the gap or above the top of the optical branch is related to the balance
between the cubic and quartic anharmonic interactions. Surface modes of an anharmonic
character were also found.

In the present work we consider a diatomic chain with alternating force constants between
nearest neighbours, which models a row of atoms in the〈111〉 direction of a zinc-blende-struc-
ture crystal. This system differs from both the diatomic chain with a single force constant and
a diamond-structure chain in that there is no centre of inversion and hence no classification
of the modes as even or odd parity. Furthermore, surface modes are possible in the harmonic
limit.

We treat the problem numerically [13] by solving the equations of motion of a chain
containing a large number of atoms so that the results do not depend on the number of atoms
chosen. As a specific case, we investigate GaN which has a relatively large gap. The interatomic
potentials are discussed in section 2, where we also present the results for localized modes in
the interior of the chain. In section 3 we discuss surface modes with a light atom at the end of
the chain. The end atom can be connected to its interior neighbour by either a strong bond or
a weak bond. The case of a heavy atom at the end of the chain is treated in section 4. Here
the end pair of atoms can be connected to the interior by either a strong bond or a weak bond.
The conclusions are presented in section 5.

2. Intrinsic localized modes in the gap

We consider a diatomic chain of alternating light and heavy atoms, of massesm andM
respectively. The unit cell is taken to have the light atom at the origin. This atom is bonded
with a strong force constant to the heavy atom of the basis, which in turn is weakly bonded to
the next-neighbour light atom. The atoms interact via nearest neighbours with harmonic, cubic
and quartic interactions. Since the cubic terms introduce static displacements, we express the
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displacementun of thenth atom in the form

un = a0A(ξn cos(ωt) + φn) (1)

wherea0 is a unit length whose value has been taken equal to 1 Å, theξn are the relative
time-independent displacements of the atoms, theφn are the static displacements,A is the
dimensionless maximum amplitude andω is the frequency. The rotating-wave approximation
is employed to study stationary modes.

We do not present the equations of motion, since they are easily constructed from those for a
diamond-structure chain [21] by a simple replacement of the masses. The strong force constants
are denoted byk2, k3 andk4 for the harmonic, cubic and quartic interactions, respectively. The
weak force constants are denoted byk2, k3 andk4. The force constants for GaN were determined
from the potential used by Zapolet al [22] by matching the bulk phonon frequencies of GaN.
For our one-dimensional system we represent the short-range part by a Born–Mayer potential.
The parameters were fitted to the acoustic and optical branches in the〈111〉 direction at the
zone boundary.

We introduce dimensionless quantities defined by

�2 = mω2/k2 K3 = k3a0/k2 K4 = k4a
2
0/k2

K2 = k2/k2 K3 = k3a0/k2 K4 = k4a
2
0/k2.

The values of the dimensionless force constants were found to be

K2 = 0.32

K3 = −1.75 K3 = −0.63

K4 = 1.44 K4 = 0.53.

To solve the system of coupled equations of motion we use a routine based on the Newton
scaled gradient method. We start with a few atoms and an initial guess of the displacements.
The routine then determines the solution through an iterative procedure. One atom is then
added to each end of the chain and the iterative procedure is continued up to a total of about
200 atoms. The addition of atoms at stepn acts as a perturbation on the atomic displacements
pattern of stepn − 1. If the perturbation does not destroy the mode, we say that the mode is
a stable solution. The stable mode that we obtain has a large displacement amplitude on the
atom at the centre of the chain and a rapidly decaying amplitude on the neighbouring atoms.
ILM can also be obtained with the maximum displacement off-centre. When the maximum
displacement occurs at a surface atom, one has a surface ILM.

To study the relative effects of cubic anharmonicity, which lowers the frequency of the
modes, and of the quartic anharmonicity, which raises them, we have made calculations in
whichK2, K4, andK4 are fixed, butK3 andK3 are varied. In additional calculations only
K4 andK4 are varied. Results obtained for the frequencies of the localized modes for several
values of the cubic anharmonic force constants are presented in figure 1. The(K2,K4)model
has a localized mode with frequency above the top of the optical branch, as it is known [8,11].
The introduction of cubic terms lowers the frequency until finally, for the full(K2,K3,K4)

model, the frequency drops into the gap. The effect of reducingK4 andK4 is to cause the
localized mode frequency to move lower into the gap as shown with full symbols in figure 1.

The displacement pattern for the localized mode associated with the(K2,K4) model is
given in figure 2. The maximum relative displacement of the central light atom was fixed by
settingξ0 = 1. This mode has neither odd nor even parity as a consequence of the lack of a
centre of inversion in the GaN crystal. If the mass of the heavy atom is reduced, displacements
of the heavy atoms are increased.
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Figure 1. Frequency squared for gap localized modes versus amplitudeA for different values of
the cubic terms. The curves refer to:©: the(K2,K4)model;4 and5: the(K2,K3/2,K4)model
(upward-pointing and downward-pointing triangles refer to ‘quasi-odd’ and ‘quasi-even’ modes);
�: the(K2,K3,K4) full model;•: the(K2,K3) model;N: the(K2,K3,K4/2) model.
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Figure 2. Normalized displacementsξn of the localized mode for amplitudeA = 0.25 in the
(K2,K4) model. Only the central part of the chain is shown. Open diamonds indicate the light
atoms; full diamonds indicate the heavy atoms.

When cubic anharmonicity is added to the potential, the situation changes considerably.
For the case of half-maximum cubic anharmonicity with force constantsK3/2 andK3/2, two
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localized modes with distinct frequencies were found, shown at upward-pointing triangles and
downward-pointing triangles in figure 1. With full cubic anharmonicity the frequencies of
these two modes become quasidegenerate and are within 1% of each other. In figure 3 the
displacement pattern for one of these modes is presented. The maximum amplitude is on a light
atom and the frequency is inside the gap as shown in figure 1. This mode closely resembles
the even-parity gap localized mode present in a diatomic chain [11]. The loss of inversion
symmetry produced by the two different force constants mainly affects the displacement of
the heavy atom that is strongly bound to the light atom at the origin.
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Figure 3. As figure 2, but for the ‘quasi-even’ gap localized mode for amplitudeA = 0.225 in the
(K2,K3,K4) model. The static displacementsφn are shown as♦.

The displacement pattern of the second mode, which strongly resembles that of an odd-
parity mode, is shown in figure 4. The presence of full cubic anharmonicity causes the freq-
uency to lie in the gap.

3. Surface modes with a light end atom

The lack of inversion symmetry in the zinc-blende structure permits two inequivalent semi-
infinite chains: one with the end pair of atoms strongly bound and the other with the end
atom pair weakly bound. We first discuss the case of a strong bond with a light atom at the
end of the chain. The boundary condition isξ0 = 1, whereξ0 is the relative displacement
of the end atom. The surface mode has its maximum displacement on the end atom and is
the anharmonic analogue of the surface mode that exists in a semi-infinite diatomic harmonic
chain. It is derived from the bottom of the optical branch as a result of the creation of the
surface.

The frequency of the surface mode as a function of the amplitudeA is presented in figure 5
for several sets of force constants. The(K2,K4) potential gives a mode with frequency in the
gap for small amplitudes. IncreasingA causes the mode to rise into the continuum of the
optical branch and become a broad resonance. For sufficiently large amplitudesA, the mode
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Figure 4. As figure 2, but for the ‘quasi-odd’ gap localized mode for amplitudeA = 0.25 in the
(K2,K3,K4) model.
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Figure 5. Frequency squared for surface localized modes with a light end atom strongly bound
versus amplitudeA for different values of the cubic terms. The curves refer to:©: the(K2,K4)

model;4: the (K2,K3/2,K4) model;�: the (K2,K3,K4) full model; •: the (K2,K3) model;
N: the(K2,K3,K4/2) model.

becomes localized again with frequency above the top of the optical branch.
Introducing cubic anharmonicity into the potential leads to a lower mode frequency. For

the full (K2,K3,K4) potential the frequency is inside the gap for all values of the amplitude
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considered. For the(K2,K3)model the frequency decreases with increasingA and merges into
the acoustic continuum forA > 0.2. In figure 6 the displacement pattern of the surface mode
for the(K2,K3,K4)model is plotted. The strong bond coupling the end pair of atoms causes
the displacement of the first interior atom to be larger than that of the second interior atom.
We recall that these two displacements are equal in the case of a harmonic diatomic chain with
a single set of force constants. Note that the static displacements produce an expansion at the
surface.
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Figure 6. Normalized displacementsξn of surface localized modes with a light end atom strongly
bound for amplitudeA = 0.25 in the(K2,K3,K4)model. The static displacementsφn are shown
as♦.

In the case of a weak bond at the end of the chain we find that the frequency remains in
the gap for several models of the potential as displayed in figure 7. Only for the(K2,K3)

model does the surface mode enter the acoustic branch. The displacement pattern, illustrated
in figure 8, is similar to that of the harmonic surface mode of a diatomic chain with a single set
of force constants for all amplitudes up toA = 0.4. The interior strongly bound pairs of atoms
move as single entities. One also notices that cubic anharmonicity causes an expansion of
the chain through the static displacements. In the case of a diamond-structure chain nonlinear
surface modes arise from either the top of the acoustic branch or the top of the optical branch.
In the present case (GaN) the nonlinear surface mode emerges only from the bottom of the
optical branch. However, for zinc-blende-structure materials with smaller mass ratio such as
GaAs, nonlinear surface modes can arise from the top of the optical branch.

4. Surface modes with a heavy end atom

Just as in the case of a light end atom we find two types of surface mode. The boundary
condition for the displacement of the light atom next to the heavy end atom isξ1 = 1. When
the end pair of atoms is strongly bound, the frequency is found to depend on amplitude as
shown in figure 9 for several sets of values for the force constants. For the(K2,K4)model the
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Figure 7. Frequency squared for surface localized modes with a light end atom and weak
bond versus amplitudeA for different values of the anharmonic terms. The curves refer to:
©: the (K2,K4) model;4: the (K2,K3/2,K4) model;�: the (K2,K3,K4) full model; +: the
(K2,K3,K4/2) model;×: the(K2,K3) model.
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Figure 8. Normalized displacementsξn of surface localized modes with a light end atom weakly
bound for amplitudeA = 0.25 in the(K2,K3,K4)model. The static displacementsφn are shown
as♦.

frequency lies above the top of the optical branch. Introduction of cubic anharmonicity lowers
the frequency. For the full(K2,K3,K4)model the frequency emerges from the bottom of the
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Figure 9. Frequency squared for surface localized modes with a heavy end atom strongly bound
versus amplitudeA for different values of the cubic terms. The curves refer to:©: the(K2,K4)

model;4: the (K2,K3/2,K4) model;�: the (K2,K3,K4) full model; •: the (K2,K3) model;
N: the(K2,K3,K4/2) model.

optical branch and exists in the gap for a limited range of amplitudes. The(K2,K3) model
produces a surface mode whose frequency approaches the acoustic branch at large amplitudes,
A > 0.3. The displacement pattern for the surface mode in the full(K2,K3,K4) model is
shown in figure 10. The largest displacement occurs on the light atom next to the heavy end
atom and there is a noticeable static expansion at the surface. Only the first two heavy atoms
close to the surface have appreciable displacements. A similar displacement pattern is found
for the(K2,K3/2,K4) model.

When the end pair of atoms is weakly bound, a surface mode occurs for the full
(K2,K3,K4) model whose displacement pattern is given in figure 11. It is rather similar to
that for a strongly bound end pair (figure 10). The principal differences are that the heavy end
atom has a smaller displacement in the weakly bound case, but the heavy-atom displacements
are significant more deeply into the interior of the chain. The frequency of this surface mode
is almost degenerate with that of the surface mode associated with a strong bond.

5. Summary and conclusions

In this article we report the results of a theoretical investigation of stationary intrinsic localized
modes of vibration in a diatomic chain with alternating force constants. We focus our attention
on small, but physical displacements in order to expand with accuracy the full potential up to
fourth order. The use of a force-constant model makes more transparent the role played by
the cubic and quartic anharmonicity terms. The model considered simulates a row of atoms
in the〈111〉 direction of a III–V semiconductor such as GaN. Cubic and quartic anharmonic
interactions are included in the interaction potential. A rich spectrum of intrinsic localized
modes has been found. These modes are stable with respect to perturbations produced by
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Figure 10. Normalized displacementsξn of surface localized modes with a heavy end atom strongly
bound for amplitudeA = 0.25 in the(K2,K3,K4)model. The static displacementsφn are shown
as♦.
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Figure 11. As figure 10, but for a surface localized mode with a heavy end atom weakly bound for
amplitudeA = 0.25 in the(K2,K3,K4) model.

adding extra pairs of atoms to a chain ofn atoms. Since the crystal considered has no centre of
inversion symmetry, the localized modes cannot be classified as having even or odd parity. Our
analysis, however, reveals the existence of two different types of localized mode in the gap.
One type closely resembles an odd-parity mode in a diamond-structure chain, while the other
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type resembles an even-parity mode. However, the displacement amplitude of a light atom is
larger than that of a closest-neighbour heavy atom by roughly the ratio of the two masses.

The quartic term in our interaction potential strengthens the potential, whereas the cubic
term weakens it. To understand the interplay between the cubic and quartic terms we have
performed several calculations in which we reduce the cubic or the quartic term with respect
to the values that we have determined for GaN. In contrast to the case for the Si chain, the
full (K2,K3,K4) potential gives the frequency of all the localized modes inside the gap for
the range of amplitudes considered. This difference can be attributed to the larger value of the
K3/K4 ratio in GaN.

Due to the presence of two different nearest-neighbour bonds in the zinc-blende-structure
chain, the crystal can be truncated to create a surface in several different ways: an end light
atom can be strongly or weakly bound to the next-neighbour heavy atom in the interior of
the crystal or an end heavy atom can be strongly or weakly bound to the next-neighbour light
atom. For all these possibilities we found surface modes with the maximum displacement on
a light atom. In the case of a light end atom weakly bound to its interior neighbour we have
found a displacement pattern very close to that of the harmonic surface mode. Because of its
large gap, GaN seems to be a good candidate for experimental studies of intrinsic localized
modes.
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